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SUlVIMARY

The objective of this research is to reduce the end-point vibration of a large,

teleoperated manipulator while preserving the usefulness of the system motion. A master

arm is designed to measure desired joint angles as the user specifies a desired tip motion.

The desired joint angles from the master arm are the inputs to an ad_aptive P.D. control

algorithm that positions the end-point of the manipulator. As the user moves the tip of

the master, the robot will vibrate at its natural frequencies which makes it difficult to

position the end-point. To eliminate the tip vibration during teleoperated motions, an

input shaping method developed by Singer and Seering from M1T is presented.

The input shaping method transforms each sample of the desired input into a new

set of impulses that do not excite the system resonances. The method is explained using

the equation of motion for a simple, second-order system. The impulse response of such

a system is derived and the constraint equations for vibrationless motion are presented.

To evaluate the robustness of the method, a different residual vibration equation from

Singer's is derived that more accurately represents the input shaping technique. The

input shaping method will be shown to actually increase the residual vibration in certain

situations when the system parameters are not accurately specified. Finally, the

implementation of the input shaping method to a system with varying parameters is

shown to induce a vibration into the system. To eliminate this vibration, a modified

,,°

y.a11



command shaping technique is developed. The ability of the modified command shaping

method to reduce vibration at the system resonances is tested by varying input

perturbations to trajectories in a range of possible user inputs. By comparing the

frequency responses of the transverse acceleration at the end-point of the manipulator,

the modified method is compared to the original P.D. routine. The control scheme that

produces the smaller magnitude of resonant vibration at the first natural frequency is

considered the more effective control method.

xiv



CHAF[_R I

INTRODUCTION

1.1 Motivation for this Research

The industrial applications for robots with a relatively large workspace has

increased significantly over the past few years. Most of the attention has been focused

on the assembly of large space structures, the welding of airplanes and automobiles, the

weaving of new composite structures such as submarines and, more recently, the

inspection and removal of hazardous waste [9,22,23,48]. With an expanded workspace,

the robot is often required to move large distances in a relatively short amount of time.

The demand for a high speed robot with a large workspace usually requires long,

lightweight links which are inherently flexible. This flexibility allows the link to store

potential energy which is often returned to the system in the form of kinetic energy.

Therefore, the end-point vibration of the manipulator, as well as uncertainty in the end-

point position, can be directly related to the inherent flexibility of the links.

For space and hazardous waste environments, a remote operator is needed to

perform most of the required tasks. The user often dictates the motion of the robot

through the workspace and then precisely positions the end-point of the manipulator to

perform a task. A teleoperated system is ideal for the user interaction requirements.

Through the use of a joystick or other input device, the operator can specify the desired



trajectory in either end-point coordinates or joint coordinates. Therefore, the user's

desired motion can be transformed inw actual robot motion.

This research addresses the end=point vibration of a large, teleoperated

manipulator. Present methods for reducing end-point vibration are discussed to

determine the appropriate strategy to reduce tip vibration of the manipulator.

1.2 Previous Methods for Reducing Vibration

The problem of reducing end-point vibration is not a new one. Many different

methods, both passive and active, have been investigated to eliminate unwanted

oscillations. The most crude passive approach to eliminate vibration is to simply wait

for the vibrations to stop after a desired motion. NASA originally used this method on

their Space Shuttle Remote Manipulator System but found it to be costly in completion

time requirements. Alberts and Book [1,2] experimented with a thin film of visco-elastic

material that is applied to the structure surface and then covered with a very stiff

constraining layer. When the beam is deformed, the visco-elastic material is sheared and

thus energy is dissipated. The major drawback is that the vibrations are not eliminated

but just reduce(l in amplitude.

The majority of the strategies to eliminate end-point vibration involve active

control structures.

based upon them.

system is required.

arm segment.

Different states of the system are measured and control efforts are

As with many effective control schemes, an accurate model of the

Book [6] used distributed and lumped parameter models for each

The models are combined using homogeneous transformations and then

2



numerical techniques are used to derive frequency domain information. Book [7] later

derived the recursive dynamic equations for a flexible manipulator. However, the

recursive method must be evaluated symbolically to obtain the dynamic equations in

closed form. Finally, Book [8] reviews the mathematical representations commonly used

in modeling flexible systems.

Hastings and Book [17] extended active control methods by including swain

feedback in the control structure. Their experiments showed that strain feedback can

reduce the residual vibration during settling time. However, they concluded that the

vibrations are inevitable with a feedback control scheme because the feedback control

signal contains high frequency components, which excite the system resonances.

Montgomery, Ghosh and Kenny [33] propose torque-wheel actuators to reduce

overshoot in the Space Shuttle Remote Manipulator. Their method uses an inertial device

to assist in reducing end-point vibration when following telerobotic commands. The

results from their experiments indicate that the torque-wheel can produce a vibration of

significant amplitude to diminish the original vibration while under teleoperated control.

However, this procedure requires external devices to be mounted on the robot and is

shown to work only for an abrupt stop command.

Tewani, Walcott and Rouch [45] suggest using a dynamic absorber as a viable

means for suppressing vibrations of a system. The method involves the combination of

passive elements, active elements and an absorber mass to apply a controlling force to

the system. Using a disturbance rejection control strategy, the amplitude of vibration

was significantly reduced. However, this method would be difficult to implement on a



teleopera_d system because the disturbances are never known exactly. By implementing

a Linear Quadratic Regulator (LQR) controller, a reduction in amplitude of vibration was

still observed.

Presently, Lee and Book [28,29] are studying the effects of inertial forces to

suppress the vibration of a large, flexible robot. By mounting a small robot at the tip

of the large robot, damping forces are generated to accommodate the inertial forces

generated when the tip vibrates. Simulation results have shown the effectiveness of the

damping forces and the controller designed. Using deflection rate control, vibrations are

damped in half the time required with passive control. Currently, Lee is conducting

experiments using the prescribed robot configuration to verify simulation results.

Singer and Seering [39,40] presented a method of generating shaped command

inputs to reduce end-point vibration. Unlike the previous methods which measure system

states to reduce vibration, Singer's method utilizes system information to alter input

commands to the actuators. Each commanded impulse is appropriately distributed into

a multiple impulse input whose characteristics are based on the system's natural

frequencies and damping ratio. This procedure, in effect, filters out frequency

components near the system's resonances to avoid exciting the system. Later, Singer and

Seering [38,42] show that the input shaping idea is effective with teleoperator inputs.

However, their system was limited to a beam operating in the horizontal plane so that

the natural frequency was constant for a given experiment.

4



1.3 Characteristics of a Flexible System

The equations of motion of a flexible system can be quite complex when

compared to the rigid body counterpart. Lagrange's equations of motion produce an

infinite number of vibrational modes and frequencies for just a simple I_uler beam

[14,31,32]. The ability to regulate these modes is limited by the bandwidth of the

control system. Therefore, only a finite number of modes of a flexible system can be

controlled.

Nonlinear effects due to large tip velocities may also need consideration. The

centrifugal and Coriolis accelerations may generate additional tip vibration that is not

controllable with conventional feedback schemes. The deflection of the manipulator due

to vibration may also exhibit nonlinear properties if the amplitude of vibration is large

relative to the link length.

The nonminimum phase characteristic of flexible systems must also be considered

for tracking teleoperated inputs. Kwon and Book [24,25] show that the transfer function

between the input at a joint and the end-point position has zeros with positive real parts.

These right-half complex plane zeros cannot be canceled using conventional feedback

control algorithms. This prevents the feedback controller from having asymptotic

tracking stability.

Finally, the issue of noncolocated control must be mentioned. Noncolocated

control occurs when the control effort and the sensing of the system states do not occur

at the same point in the system. An example is when a robot is actuated at the joints but

the end-point position is sensed at the tip. Often, nonminimum phase characteristics arise



when a system is noncolocated. Therefore, a noncolocated, state feedback control

scheme must be designed with some consideration for system instability.

1.4 Method of Approach

The main focus of this research is the alleviation of end-point vibration in a

telerobotic system. To avoid the complex derivation of dynamic equations, an adaptive

control strategy derived by Yuan is used [49,50]. His controller was based on the error

between the desired joint angles and the actual joint angles. By devising an operator

input device that commands desired joint angles, Yuan's controUer was easily

transformed to work.as a teleoperated control system.

This control structure is then compared to a control scheme that performs input

shaping to the joint error signal. First, the original input shaping method developed by

Singer is implemented and shown to produce a vibration in the system. To prevent this

vibration, a modified command shaping technique is developed.

The advantages of using this new modified method over the original adaptive

control scheme are then examined. By giving the two control methods identical input

trajectories, the frequency responses of the transverse acceleration at the end-point of the

manipulator are compared. The control scheme that produces the smaller magnitude of

resonant vibration at the first natural frequency of the system is considered the more

effective control method.
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CHAPTER II

EXPERIMENTAL TEST BED

2.1 Description of the Robotic Manipulator

The flexible manipulator used in the Flexible Automation Laboratory at Georgia

Tech was designed by a Master's student in 1986. Wilson [47] designed the robot to

carry a _ayload of around 100 pounds, to reach second story windows and to be

lightweight. To meet the design specifications, a two degree-of-freedom manipulator was

built using 10 feet long, aluminum links. By choosing aluminum, the structure remains

lightweight with good strength properties.

The manipulator, named RALF (Robotic Arm, Large and Flexible), is shown in

Figure 2.1. Both links are maneuvered using single ended hydraulic actuators. Actuator

one is attached directly to a collar on link one while actuator two positions link two using

a four-bar parallel mechanism. This parallel mechanism gives much needed support to

allow the robot to lift the 100 pound payload requirement. The mechanism also stiffens

the overall structure which raises the system natural frequencies. However, this parallel

linkage produces nonlinear effects (e.g. dead bands) and couples the dynamics of the two

links together.

The nonlinear dynamic equations of motion were derived by Lee [26] using

Lagrange's equation. These nonlinear equations were evaluated in symbolic form and

7



then, using singlevalue decomposition,the constraineddynamicsystemwassolved.

Figure 2.1 Two-Link Flexible Manipulator

Sincehydraulicactuatorsareused,thejointmotionsare limited.Jointone has

a range from 35° to 110°,which ismeasured from the horizontalplane. Jointtwo is

limitedtoanglesof 55 ° to 108° when measured relativetolinkone. Even withlimited

jointmotion,theworkspace,shown in Figure2.2,isstillquitelarge. Noticehow the

firstlinkof RALF isabletopassthroughtheverticalaxis,yo,thatintersectsjointone.

This allowsthecenterof gravityof themanipulatorto move from one sideof theaxis



to another which can create unusual dynamics for the actuator connected to link one.

Since the forces required for a given motion arc different in each region, the actuator

dynamics play an important role in the frequency analysis conducted in Chapter IV.

_ (95.0,192.D
(-162.4,141.9)

Figure 2.2 The Workspace of RALF

Now that the physical structure of RALF has been discussed, the forward and

inverse kinematics are presented. The derivation of the kinematic equations is best

handled using matrix transformations. By representing each degree of freedom of the

manipulator with an individual coordinate frame, a matrix transformation is created

[I 1,44]. Each matrix transformation relates the current coordinate system to the previous

one. The overall transformation, relating the end-point to the base of the robot, is

obtained by multiplying the individual matrix transformations together. For a flexible

system, Book [7] demonstrated that the overall matrix transformation is actually the

superposition of a rigid body transformation and a flexible transformation. This stems

9



from the fact that the position of a point ill a flexible system can be described using rigid

body coordinates along with the modes of vibration. The rigid body coordinate frames

used for RALF are shown in Figure 2.3.

Figure 2.3 Coordinate Frames for RALF

For slow motions, the flexible modes of vibration may not be excited. In this

situation, the rigid body transformations give a reasonable approximation of the tip

position. Since modeling of the flexible dynamics is not the main emphasis of this

research, only the rigid body transformations are considered. The rigid body

10



transformationsfor RALF aregiven in Appendix A.

The forward kinematics problem can be stated as follows: given the joint variables

of the robot, determine the position and orientation of the end-effector. For RALF, only

the (x,y) coordinates of the end-point are important. From the overall matrix

transformation given in Appendix A, the last column yields the desired kinematic

equations. The forward kinematic equations are

x * L:cos(O_ *0 2) + Llcos(0 l) - _sin(0_) (2.1)

y -/,_sin(Oz +e 2) + Lzsin(e x) +/._cos(Oz). (2.2)

The inversekinematicsproblem is more difficultthan the forward kinematics

solution.The inversesituationsimplystatedis:givena desiredpositionand orientation

for the end-effcctor,determineallthe possiblejointconfigurationsthatachievethe

desiredpositionand orientation.Sincetheresultingkinematicequationsarenonlinear,

thereisno guaranteeof findinga uniquesolutionor even findinga realsolutionatall.

The existenceof a solutiondefinestheworkspace of themanipulator.The lack

of a solutionindicatesthatthedesiredpositionand orientationarenot withintherobot's

workspace.

11



From Appendix A, the inverse kinematic equations are

02 - atan2 (2.3)

( -x (L=sin(e:) *L_) .y (L_r._(e2) ÷L_) )e_ = _ x(L_c_<e2)+L_)÷y(L:_n(O=)+L_ )
(2.4)

where

(2.5)

2.2 Design of an Input Device

The main function of the input device in teleoperation is to assist the operatorin

accurately maneuvering the end-point of the manipulator. By sensing the user's desired

motions, the device should convert these motion commands to movements of the end-

point. The design of such an input device should be functional and suitable for the

specific application.

Fischer, Daniel and Siva [13] discuss many guidelines for the design of input

devices for use in teleoperation. The engineering group emphasized the necessity of the

feedback of key information such as position and forces to avoid damage to the robot.

12



Since bracing of the manipulator is not considered and the workspace of RALF is

unobstructed, only the relative position of the tip in the workspace is necessary.

Since RALF has only two degrees of freedom, the design of the input device was

quite simple. A two link scaled model of RALF was designed with linear potentiometers

placed at each joint to record the user joint commands. By moving the master arm, the

operator can think of positioning the end-point of the manipulator in Cartesian

coordinates while the input device functions in joint coordinates. This strategy of

measuring joint commands directly works well with the adaptive control routine

developed by Yuan discussed in Chapter I.

The overall teleoperated system designed to position the end-point of RALF is

shown in Figure 2.4. The workspace of RALF is mounted as a backdrop to give the

operator a scaled picture of the allowable workspace. This arrangement makes it easier

for the user to make relative maneuvers within the workspace.

2.3 Interfacing the Telerobotie System

The coordination of the master arm with the slave arm in a telerobotic system is

important to produce desired results. Fiala [12] describes a logical architecture for

connecting teleoperation input devices to the telerobotic control hierarchy. A method of

handling control information is presented which allows many system components to

access the information simultaneously. He also explains the two main classes of

teleoperation input devices, joint-space devices and Cartesian devices.

13



Figure 2.4 Teleoperated System

The effects of varying system parameters on the ability of the operator to position

the end-point of the manipulator should be understood. Hannema and Book [15] discuss

moving the end-point of a manipulator from one point to within a certain toleranceband

surrounding a desired point. They examined the effects of backlash, Coulomb friction

and bandwidth on the ability of an operator to position the end-point of a manipulator.

They showed that a linear model, relating the task parameters of distance and width to

performance in task completion time, could be made. Their experimental results

14



revealed an improvement in task completion time as the joint bandwidths were increased

from 1 to 3.5 I-Lz.

Uebel, Ali and Minis [46] also investigated the effects of bandwidth on operator

performance using a Robotics Research Corporation slave arm with a Kraft Telerobotics

master arm. Varying the joint bandwidths from 0.5 to 2 Hz, experienced operators

performed five repetitions of a peg-in-a-hole task for three different bandwidths. Their

results also show a decline in operator performance as the bandwidth is decreased.

The final issue that must be considered when interfacing telerobots is the effects

of time-delay. Niemeyer and Slotine [34] address the problem of time-delays in

telerobotics by using an adaptive control strategy. By using an adaptive controller, the

manipulator bandwidth is not limited to the bandwidth imposed by the transmission

delays. However, the type of data that is transmitted (e.g. forces, torques) can alter the

behavior and stability of the overall system.

2.4 System Hardware

The telerobotic system used for experiments at Georgia Tech consists of the input

device discussed in Section 2.2 functioning as the master, and RALF as the slave. The

main control unit is a MicroVAX II made by Digital Equipment Corporation. The

necessary connections to the sensors, hydraulic valves, amplifiers and master arm are

made using an analog/digital (A/D) board made by Data Translation (see Appendix C for

equipment list). The A/D boards can sample a single channel at 6000 Hz. However,

eight channels sample at only 300 Hz. A second A/D board is available but a one

15



millisecond delay is required to switch from one board to the next board.

After the computation time for the control routines is considered, the sampling

frequency is reduced to 50 Hz. The frequencies of RALF to be controlled range from

3.7 to 5.5 Hz. From Nyquist criterion, the A/D sampling rate is still sufficient to

control these system frequencies.

The adaptive control algorithms, the modified command shaping routines and the

A/D routines were written in VAX C. Previous control routines were written in

FORTRAN (FORmula TRANslation) and had sampling rates of around 150 Hz.

Obviously, the FORTRAN code runs almost three times faster than the C code. Test

programs verify that the MicroVAX II machine is optimized to run Fortran code. The

VAX C language was chosen for portability to personal computers (PC) where future

control will be implemented.

16



CHAFFER m

MODIFIED COMMAND SHAPING

3.1 HistoricalPerspective

The originalcommand shaping techniqueto reduce system vibrationwas

introduced by Singer and Seering in 1988 [39]. The procedure involved modifying

desiredsysteminputsso thata systemcompletestherequestedmotionwithoutvibration.

The method was testedon a computer model of theSpace ShuttleRemote Manipulator

System (RAMS) developedby Draper Laboratories.Simulationresultsfrom a varietyof

commanded moves suggestedthatsignificantvibrationreductioncan be obtainedusing

themethod. Subsequentdocuments [40,41]verifiedthe abilityof themethod to reduce

end-pointvibrations.

By 1989,Singershowed thattheprocedureworked withmultiplemode systems

and was effectiveon teleroboticsystemsas well[38,42].Singhose,Seeringand Singer

expanded the method usinga vectordiagram approach to determinethe appropriate

shaping strategygiven some allowableresidualvibrationamplitude[43]. Hyde and

Seering[21]extendedtheseresultstothesolutionofa group of simultaneousnon-linear

impulseconstraintequations.

Recently,theinputshapingmethod was implemented on an overhead crane to

reduce oscillatorymotion of the objectbeing moved. Noakes and lansen [35]

17



generalized the theory associated with oscillation-damped trajectories to a system with

simply suspended loads. Previously, a crane operator moved the suspended object slowly

and allocated time for pendulum oscillations to damp out. After implementing the

oscillation-damping algorithms, they were able to position 55-gallon drums in a U-shaped

path with insignificant oscillations.

3.2 Derivation of Constraint Equations

The original input shaping method involves the manipulation of a desired input

command. Each sample of the input command is replaced by a sequence of impulses that

do not excite the system natural frequencies. Knowing the impulse response of the

system, constraint equations can be derived that yield the appropriate amplitudes and

starting times of the impulse sequence.

The constraint equations can be derived from the impulse response of a simple

linear, time-invariant second-order system. Consider the spring-mass-damper system

_///////////////////z

F(t)

Figure 3.1 Second-Order System
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shownin Figure 3.1. The vibratory responseof this system to an impulse input is

x(,)-

. -Cu.(t-t,)

where A istheamplitudeof theimpulse,_. isthenaturalfrequencyof thesystem,_"is

thedamping ratioof thesystem,tisthetimeand toisthetimewhen theimpulseoccurs.

This resultisderivedinAppendix D. Using Equation(3.1),thepositionresponse,x(t),

forthesecond-ordersystem isspecifiedfortime,t _ to.

Ifthesystem isgivena two impulseinput,thevibratoryresponseis

(3.2)

where

Ako. -¢-.(*-t0P (3.3)
Bt= e

g = t_. _ (3.4)

(3.5)
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The two impulse response given in Equation (3.2) can be simplified to yield

x(0_B.vm(ffit+,) (3.6)

where

(3.7)

LB:,os(,q,_)÷B_cos(4,2))"
(3.8)

The summation of two sinusoidsisproven in Appendix E.

Sincethesystemislinearand time-invariant,theresultsfrom Equations(3.7)and

(3.8)can be generalizedto the N impulse inputc_e. The amplitudeand phase of

vibrationfortheN impulseinputcaseare

• (3.9)

titan-I
k=l

N

k°!

(3.1o)
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Since the purpose of the input shaping method is to eliminate vibration, the

amplitude of vibration, Equation (3.9), must equal zero after the last impulse occurs.

This only happens if both the squared terms are independently zero since the sine and

cosine functions are linearly independent. The resulting equations are

• _cos(_1) .,-B2r.._s(_=) .,-...* Bxc.os(__) = 0 (3.11)

B:sin(,_) . S2sin(, 2) ..... BNsin(, N) -0 0.12)

including

B,- Ak°" --• "_b_a{tN- tOk) (3.13)

and

(3.14)

where A _ is the amplitude of the k t impulse, t N is the time when the final impulse

occurs and t ot is the time when the k * impulse occurs.
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Substitutingthe equationsfor Bk and # k into Equations (3.11) and (3.12), the

constraint equations become

N

Aj e cos¢ , - C2to,) - 0
t-!

(3.15)

N

Ake'C"'C'#-_')sin(_,_/l- C2tok) --0. (3.16)
k-I

For the constraint equations to produce the correct impulse sequence to eliminate

vibration, the natural frequency and damping ratio of the system must be known exactly.

Since these system characteristics are not precisely _known, their robustness is included

as a constraint. The robustness constraint with respect to natural frequency is found by

taking the partial derivative of Equations (3.15) and (3.16) with respect to _, and setting

the result equal to zero. Likewise, the robustness constraint with respect to damping

ratio is found by taking the partial derivative with respect to 1"and setting this result

equal to zero. After performing the described differentiation, the resulting constraint

equations are the same. Therefore, setting the partial derivative with respect to _, equal

to zero is equivalent to setting the partial derivative with respect to _"equal to zero [38].

These new constraint equations form the first-derivative robusmess criterion.
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Mathematically,theequationsforthefirst-derivativerobustnesscriterionare

N

A, to,e"c''('-") cos(o)._ - _;Ztoj)- 0
k-I

(3.17)

N

_., A, to, e'¢"("'") siu(o).Vq - C2tok) - O.
k,,l

(3.18)

Higher derivative constraints are obtained by differentiating Equations (3.15) and

(3.16) to the desired order. The m *-derivative robustness constraint equations are

N

A,(to,)" e-c'"''') cos(.._to,) - 0
k-I

(3.19)

N

A k ( to,)" • - ¢,,.(tx-,o,) sin(_.V/_ _ _2 tok) : 0. (3.20)
ir-I

The length of the impulse sequence is now determined by the number of

unknowns in a given set of constraint equations. For any given set, there will always be

two more unknowns than equations. To alleviate this dilemma, the starting time of the

first impulse is arbitrarily chosen to be time zero and the amplitudes are normalized so

that they sum to one. This particular normalization ensures that the overall amplitude

of thenew impulsesequenceisthesame as theamplitudeof thedesiredinputcommand.

23



3.3 Calculation of Impulse Amplitudes

Now that the robustness constraint equations have been determined, the impulse

amplitudes and starting times can be solved. For the two impulse input, the zero _-

derivativeconstraintequationsare utilized,which are

Bz_(¢_) + B2cos(02) - o 0.21)

Bt ,i.(¢ _) + s2sia(¢ 2) -o 0.22)

and

Bk = Ate" e'¢',('x-"), (3.23)

where A t isthe amplitudeof the k _'impulse,tN is the time when the finalimpulse

occurs(i.e.to2)and tolisthetime when thefirstimpulseoccurs.

Since any equationinvolvingsinesand cosinesis transcendental,thereare an

infinitenumber ofpossiblesolutionstoEquations(3.21)and (3.22).Therefore,onlythe

solutionthatyieldsthe shortesttime durationand a positiveamplitudefor allthe

impulsesischosen. For thetwo impulseinputcase,a completederivationof thesolution

processisfurnishedin Appendix F.
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The resulting solution for the two impulse case is

I (3.24)
At = 1+--_

to1 = 0 (3.25)

M (3.26)
/L_= I÷M

to2 = (3.27)

where

. c_....__- (3.28)
M I e l_/i_-C2

The ability of the input shaping method to eliminate vibration can be demonstrated

graphically. Consider the input in Figure 3.2 whose characteristics are given in

Equations (3.24) through (3.27).

A

tol to2

,.--"-"time

Figure 3.2 Two Impulse Input
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The second-order system response to each of the individual impulses in Figure 3.2 is

shown in Figure 3.3.

0.8

0.4

0.0

E
<

_0.4 _

System Response to Each Impulse

i _ Response to FirSt ImpulseResponse to Second Impulse

--0.8 , [ , I , I , I , I

0 4 8 12 16 20
r;me(see)

Figure 3.3 System Response to Each Impulse

Since the system is linear and time-invariant, a linear combination of two inputs

results in a response that is a linear combination of the two responses. Therefore, the

net system response to the two impulse input is shown in Figure 3.4. Since the natural

frequency and damping ratio of the system are exact, there is no vibration of the system

after the second impulse. The effects of parameter uncertainty on the amount of residual

vibration is discussed in Section 3.4.
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Overall System Response to Two Impulse Input
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Figure 3.4 Overall System Response to Two Impulse Input
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Figure 3.5 Single Impulse Response vs. Two Impulse Response
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Figure 3.5 showsa comparisonof the impulseresponseof a second-ordersystem

to the two impulse input response. Since the inputs have the same amplitude, i.e. they

sum to one, the responses can be compared to determine which is more desirable. For

this simple ca_, the two impulse input is preferred since it eliminates the vibration after

the second impulse occurs. The ability to completely eliminate the vibration is attributed

to an ideal second-order system model which provides exact system parameters.

To solve the three impulse input case, the zero _' and first derivative constraint

equations are evaluated. The complete derivation for the three impulse case is in

Appendix G. The solution for this case is

AI = 1
1 * 2M + M 2 (3.29) to1 = 0 (3.30)

A2 = 2M -
I + 2M + M 2 (3.31) t°2 _m_/_ _ _2 (3.32)

M 2
As = (3.33) tos "

I + 2M + M 2 _._/_ _ _2

2x
(3.34)
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Figure 3.6 shows the three impulse input case whose characteristics are given in

Equations (3.29) through (3.34).

inpu't:

1 A3.t
¢o_ ±02 ±03

"time

Figure 3.6 Three Impulse Input

Finally, the four impulse input case is solved. To obtain the amplitudes and

starting times of the four impulses, the zero d,, first and second derivative constraint

equations must be solved. Appendix H contains the complete derivation for this case.

The results from this appendix are

AI = 1 (3.35) to1 = 0 (3.36)
1+ 3M + 3M 2 + M s

A2 = 3M (3.37) to2 ffi (3.38)
1 + 3M + 3M z + M s _._/'_ _ _2
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2_

As = 3M2 (3.39) to3 = _2 (3.40)1 + 3M + 3M 2 + M 3 ¢a._/1-

M 3 3

"44- % ,o._-C2I + 3M + 3M 2 + M 3 (3.41) " (3.42)

Figure 3.7 shows the four impulse input whose characteristics are given in Equations

(3.35) through (3.42).

inpu'l:

A
1

T
±

Ol
"t

04

Figure3.7 Four Impulse Input
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3.4 Robustness of Constraint Equations

In Section 3.3, the two impulse input completely eliminated the vibration when

the natural frequency and damping ratio of the system were known exactly. For most

physical systems, the exact parameters are seldom known. Thus, there is some residual

vibration after the last impulse has occurred.

To determine the amount of residual vibration, a vibration error expression must

be defined. The error, denoted err, is written as the ratio of the actual multiple impulse

response magnitude to the actual impulse response magnitude of the second-order system.

The error expression is defined only for time after the multiple impulse input has

occurred to ensure that the system has received identical amplitude inputs.

Mathematically, the vibration error is writmn as

err= r)1 , for t > to, (3.43)
Ix.(t)l

where k isthenumber of impulses. The residualvibrationisjustthevibrationerror

expressed as a percentage.

The deviation in the actual system parameters from the design parameters can now

be quantified using Equation (3.43). The actual system response to a multiple impulse

input can be computed and related to the actual impulse response of the second-order

system. By studying the deviations in the natural frequency and damping ratio from the
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design parameters, their effects on the vibration error can be better understood.

This new definition of the vibration error expression is much different than the

one originally stated by Singer. He defined the vibration error expression as =the

maximum amplitude of the residual vibration during a move as a percentage of the

amplitude of the rigid body motion. = This definition is expressed mathematically with

Equation (3.9) divided by the sum of all the Ak [39], which is always unity. The main

problem with Singer's definition is that it does not accurately represent the ability of the

input shaping method to reduce vibration. In some instances, the input shaping method

can actually increase the residual vibration of a system.

To prove this point, the deviation in actual natural frequency, oJ,,, from the design

natural frequency, o_., is analyzed. The vibration error defined by Singer for the two

impulse input case is shown in Figure 3.8. Singer states that an acceptable vibration

error level is less that 5 % residual vibration for a second-order system. Therefore, the

two impulse input is robust for a frequency variation of less than 5%. Prom Figure 3.8,

the residual vibration curves decrease in magnitude for an increase in the value of

damping ratio, _'. The graph also shows that the magnitude never exceeds 100% and

therefore the input shaping method can never increase the residual vibration of a system.

This implies that the input shaping method reduces residual vibration for any variation

in natural frequency. However, the new def'mition of residual vibration clearly shows

this is not the case.
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The vibration error from Equation (3.43) for the two impulse input case is

ix,(t)l M;1

(3.44)

where w, is the actual natural frequency of the system and w, is the design natural

frequency of the system. Equation (3.44) is derived in Appendix I. Figure 3.9 shows

the new vibration" error as a function of normalized frequency, w/w,.

Vibration Error vs. Normalized Frequency
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Figure 3.9 Vibration Error vs. Normalized Frequency
Two Impulse Input

The residual vibration now increases for an increase in damping ratio, _'. This

fact may seem incorrect since the overshoot of a second-order system increases with a

decrease in damping ratio for a step input. However, analysis of the impulse response,

given in Equation (3.1), verifies the results displayed in Figure 3.9.

Figure 3.9 also shows that replacing the original impulse by a sequence of

impulses can actually have a negative effect if the actual natural frequency is over 1.5

times the design frequency. Figure 3.10 shows a second-order system response to a

single impulse input compared to a two impulse input when the actual natural frequency

is twice the design frequency. The residual vibration after the second imptdse is acmal/y

worse than if the system had only been given the single impulse. Therefore, input

shaping can have a detrimental effect when large errors in natural frequency are present.
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Figure 3.10 Single Impulse Response vs. Two Impulse Response

Since the two impulse input case is only robust for deviations in natural frequency

of less that + 5%, the robustness of the three and four impulse cases is of interest.

Figure 3.11 shows the vibration error versus normalized frequency for the three impulse

input. For this case, the input is robust for deviations in natural frequency near _ 10%.

However, the ability of the input shaping method to produce detrimental effects is much

more pronounced.

By separating the input into four new impulses, Figure 3.12 shows that the

method is robust for deviations in natural frequency close to :t: 20 %. Nevertheless, the

possible adverse effects are even more noticeable. If the actual frequency is more than

40% larger than the design frequency (for _" = 0.2), then the input shaping method is of

no practical use.
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The input shapingmethod must also be robust for deviations in damping ratio.

Section 3.2 stated that the derivative of the constraint equations with respect to damping

ratio yields the same constraint equations as the derivative with respect to natural

frequency. Therefore, robustness in damping ratio is already accomplished when

robustness in natural frequency has been considered. Figure 3.13 shows the vibration

error versus normalized damping ratio for the multiple impulse cases.

_bration Error vs. Normalized Damping Ratio
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Figure 3.13 Vibration Error vs. Normalized Damping Ratio

To evaluate the error expressions for the deviation in damping ratio of a second-

order system (see Appendix J), a specific value of damping ratio is required. For this

example, the design damping ratio is 0.05. For all three input cases, large deviations in

damping ratio do not have a significant effect on the residual vibration. This fact is

comforting since the damping ratio for a complex system may be hard to measure.
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3.5 Position Dependent System Parameters

The robustness of the constraint equations, discussed in Section 3.4, demonstrated

the ability of the input shaping method to reduce vibrations even with deviations from

the design system parameters. However, Singei"s original input shaping technique does

not address the issue of changing system parameters. For RALF, the natural frequency

and damping ratio are functions of position, i.e. joint angles. Therefore, a modified

command shaping technique was developed to accommodate varying system parameters.

First, the implementation of the input shaping technique to a discrete-time system

is presented. Figure 3.14 shows a simple block diagram of the input shaping method.

For each sample of the input, N output impulses are generated. From Section 3.3, the

output

Figure 3.14 Input Shaping Block Diagram

time period between output impulses is the same. This time period, denoted delT, is

de/T - z

(3.4s)

which is a function of both the natural frequency, _o,, and the damping ratio, _'.
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To utilize this time period information in a discrete-time system, the continuous-

time data must be represented in discrete-time. From discrete-time signal processing,

a continuous-time signal, x(0, is represented mathematically as a sequence of numbers,

x[n], where n is strictly an integer. To transform the continuous-time period delT into

a discrete-time period deln, the sampling rate of the discrete-time system, f,, is used.

The equation to perform this transformation is

deln - int ( deIT • f,) (3.46)

where the int function truncates the argument to an integer.

For the input shaping method, the discrete-time period, deln, never changes

because the system parameters are assumed constant. But when the input shaping method

is applied to a system that has time varying parameters, the continuous-time period, delT,

becomes time varying as well. A significant change in delT will result in a change in the

discrete-time period, deln, which produces an undesirable vibration in the system. The

amount of change in the continuous period that causes this change in the discrete period

is a function of sampling rate since deln is strictly an integer.

For example, a four impulse output, shaping scheme is applied to a system that

causes a change in deln from four to five. When each input sample is shaped into four

output impulses, the method would produce a steady-state impulse output shown in

Figure 3.15. Each output impulse is designated {a,b} where a indicates the discrete-time

location of the input sample responsible for the four output impulses and b indexes the
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four resultingoutputimpulses. Afterexamining Figure 3.15, itis obvious thatthe

change in de.lnhas caused gaps in the outputfor discretevalues of n. At n=4, for

example, only three impulses are contributing to the overall output. To make matters

worse, this problem is repeated five more times at a discrete-time period near the

system'snaturalperiod. This phenomenon inducesa vibrationintothe system thatis

caused solely by the application of the input shaping method to a system with time

varying parameters.

This induced vibration is also present when the value of deln decreases. Consider

a four impulse output, shaping scheme that is applied to a system that causes a change

in deln from five to four. The resulting steady-state impulse output is shown in Figure

3.16. For this situation, a surplus of output impulses is generated at a discrete-time

period near the system's natural period. These extra impulses also cause a vibration that

is produced by the input shaping method.
__

To eliminate the induced vibration, a modified command shaping method is

proposed to make the impulse output more uniform when a change in deln in

encountered. To compensate for a change in the discrete-time period, extra impulses are

added for an increase in deln and impulses are removed for a decrease in deln. The

choice of which impulses are affected is based on the number of output impulses from

the shaping algorithm and the old and new values of the discrete-time period.

The modified command shaping method can be explained by designating the

discrete-time value when the discrete period increases as n-0. For the next N-1 samples

of the input, i.e. 0 _ n < N-2, the modified command shaping technique shapes each
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sampleusingboth the old and new values of de/n to create a smooth steady-state impulse

output. Using the new value of de/n, the input sample is shaped to create N output

impulses that are added to the overall output at their respective discrete-time values.

Using the old value of de/n, the same input sample is also shaped to create N output

impulses. However, only the last N-(n+ I) output impulses are added to the steady-state

output at their respective discrete-time values. For discrete-time values of n > N-I,

each sample of the input is shaped normally using the new value of deln to generate the

N output impulses.

The modified command shaping method also works for a decrease in the discrete-

time period, de/n. For this situation, the input sample is shaped only once using the new

value of deln to produce the four output impulses. Instead of adding all four of the

output impulses, only the first (n+ I) output impulses axe added to the steady-state output

at their respective discrete-time values. By manipulating the overall output in this way,

the extra impulses that are added for the case when deln increases are the same impulses

that axe removed when de/n decreases.

One final case to consider is when the value of deln changes more than once

within one discrete-time period. For this situation, a new modified technique must be

devised. For instance, if the discrete-time period length changes from one value to

another and back again, the best method to smooth the steady-state output may be to

ignore the change in discrete period if it is relatively short.

To understand the modified command shaping procedure, consider the example

given in Figure 3.15. The value of deln increases from four to five for this input
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shaping scheme that produces four output impulses. Since Nffi4 for this case, the next

three (i.e. N-l) input samples will be shaped twice. At discrete-time n=0, the input

sample is shaped using the new value of deln O.e. 5) to create four (i.e. N ) output

impulses that are added to the overall output. At the same discrete-time value, the input

sample is shaped using the old value of deln (i.e. 4) to create four (i.e. N ) output

impulses. However, only the last three (i.e. N-(n+ 1)) impulses are added to the overall

output at their respective discrete-time values. For the next discrete-time value, i.e.

n ffi 1, the input sample is shaped using the new value of deln to create the usual four

output impulses that are added to the overall output. When the input sample is shaped

using the old value of deln, only the last two (i.e. N-(n+ 1)) output impulses are added

to the general output. This process of shaping the input samples twice is repeated until

the discrete-time value, n, is greater that N-2. After n > N-2, the shaping continues

normally using only the new value of deln to produce the output impulses.
.÷

This modified command shaping technique is demonstrated on the two examples

discussed previously when the number of output impulses is four. Figure 3.17 shows the

modified shaping technique implemented for the _ when the discrete-time period

increases from four to five. The impulses due to the modified command shaping

technique are darkened to show emphasis only. Figure 3.18 shows the modified shaping

technique applied to the ca_ when the period decreases from five to four. The impulses

that are created but not added are drawn in the figure without tails to distinguish them

from the normal impulses. The success of this modified input shaping technique is

discussed in Chapter V.
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CHAPTER IV

DYNAMIC ANALYSIS OF RALF

4.1 Previous Frequency Analysis

The vibration analysis of RALF has been described by several investigators in the

last five years. Huggins and Lee have performed the most research on verification of

modeling methods and control algorithms for RALF. Huggins [19,20] conducted

extensive finite element analysis to verify mathematical and experimental models used

to determine the system modes and natural frequencies. Lee [26,27] derived a nonlinear

model of RALF and then verified it through simulations using TREETOPS, a computer

software package. However, these investigators only conducted research on a limited

workspace of RALF. For a teleoperated system, the frequency data for the whole

workspace is needed to implement the modified command shaping technique.

4.2 Experimental Setup and Procedures

The experimental determination of system resonances and damping ratios using

digital Fourier analyzers is well published. Ramsey [36,37] discusses the importance of

understanding the dynamic behavior of vibrating systems. Using Fourier analyzers, he

explains many effective measurement techniques for modal analysis of different vibrating

systems. The frequency response of a second-order system determined from several
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differenttestinputsisalsopresentedand thetrade-offsforeach method isdiscussed.

Hewlett-Packardhas publishedmany applicationnotesabout usingtheirDigital

Signal Analyzer (HP3562A) for modal analysis [3,4,5]. After reviewing these

documents, random noise was chosen as the input to determine the desired system

properties. Using the P.D. feedback control algorithm running on a MicroVAX to hold

RALF is a desired joint configuration, the random noise signal from the analyzer was

added to the control signal to stimulate the system. The system was excited at the

control level instead of using an external shaker to include actuator dynamics that might

influence the results. The circuit that combined the two signals is shown in Appendix

K for reference. An accelerometer, mounted at the tip of RALF, measured the

transverse acceleration of the second link which was then recorded by the analyzer.

For a given joint configuration, the power spectrum of the acceleration signal was

averaged ten times to minimize noise effects. For the power spectrum, the analyzer can

generate a second-order approximation for the pair of poles that correspond to the mode

of vibration of the system. The poles are presented in the form

s - D ±jr Hz. (4.1)

From control theory, a pair of complex poles can be expressed as

s. - (.t', - u:: (4.2)

when0 _ _'_ I.
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Comparing Equations (4.1) and 0.2), the natural frequency, f_, and damping ratio, _',

can be solved from the analyzer output by

D2 (4.4)f.. jr2. D2 (4.3) _ - f_ .,.o2.

Notice that the analyzer output value f is the damped natural frequency. This value is

actually of more use in this form when the modified command shaping technique is

implemented in the controller.

To obtain the desired frequency data, the workspace of RALF was divided up into

ten degree joint increments and the power spectrum of the acceleration was taken at each

location. Using Equations (4.3) and (4.4), the natural frequency and damping ratio of

the first mode of vibration were calculated from the power spectrum output of the

analyzer.

4.3 Modal Analysis Results

The fundamental damped natural frequencies calculated from the analyzer as a

function of RALF's joint coordinates are presented in Table 4.1. The fundamental

natural frequencies of RALF were also calculated and are given in Table 4.2. Finally,

the damping ratios were calculated from the analyzer output and are in Table 4.3.
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Table 4.1 Fundamental Damped Natural Frequencies vs. Joint Coordinates

/, (1 z)

01

(deg)

4O

50

6O

7O

80

90

100

109

6O

5.17

4.92

4.75

4.27

3.79

4.23

3.98

3.7

70

5.2

4.99

4.77

4.26

4.12

4.29

4.07

3.8

02 (deg)

8O

5.17

4.98

4.84

4.32

4.11

4.4

4.14

3.92

9O

5.19

4.87

4.86

4.28

4.39

4.45

4.25

3.97

100

5.46

5.37

I 107

5.15

5.24

4.99 5.27

4.33

4.37

4.51

4.28

4.11

4.4

4.27

4.44

4.33

4.07

Table 4.2 Fundamental Natural Frequencies vs. Joint Coordinates

f. (Hz) 02 (deg)

01

(deg)

4O

6O

5.19

109

7O

5.21

3.73

80

5.18

100

5.47

[ 9o
5.21

4.9

4.88

4.30

4.4

4.47

4.27

3.99

107

5.18

50 4.94 5.01 5.01 5.37 5.24

60 4.76 4.78 4.85 5.01 5.34

70 4.29 4.29 4.34 4.35 4.42

80 3.8 4.13 4.12 4.38 4.28

90 4.25 4.3 4.41 4.52 4.45

100 4.0 4.09 4.16 4.3 4.35

3.83 3.95 4.13 4.12
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Table 4.3 Damping Ratios vs. ]oint Coordinates

01

(deg)

i

40

60

0.083

70

0.071

02 (deg)
)

80 100

0.049

107

0.1070.061

50 0.084 0.086 0.116 0.116 0.026 0.027

60 0.076 0.076 0.072 0.079 0.084 0.166

70 0.105 0.110 0.093 0.102
i

0.085 0.083 0.082 0.07680

0.084

0.098

0.129

90

I00

109"

0.078

0.094

0.113

0.093 0.083

0.086

0.109

0.108

0.091 0.099

0.071

0.062

0.087

0.1020.121

0.065

0.063

0.092

0.149

4.4 Curve Fittingof Experimental Data

The damped naturalfrequencyand damping ratiodata isnot usefulforcontrol

purposes in tabular form. A look-up table to find needed values in a control algorithm

can demand lots of precious computation time which slows down the sampling rate of the

control system. Therefore, the data was curve fitted to shorten the computation time and

permit a faster sampling rate. Appendix L discussesthe least-squares curve fit of the

experimentaldata.
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The polynomial regressions that were derived for the damped natural frequency and

damping ratio are

- - 0.42120_ + 1.80860_ - 2.1441 e: - 02229e 

+ 1.45400_ - 3.63920: + 7.7830
(4.5)

(el,o:) - - 0.42690] + 1.89180_ - 2.71590: - 0.0fi330_

+ 0.34100_ - 0.614801 + 1.6762.
(4.6)

To determine how well the equations approximated the experimental data,

Equations (4.5) and (4.6) were evaluated at all of the joint positions. Each calculated

value of the damped natural frequency, f_, was then divided by the experimental value

of the damped natural frequency, fd, at the corresponding joint angles to create a

normalized frequency, f,-/fd. The normalized frequencies as a function of joint

coordinates is shown in Table 4.4. Using this normalized frequency, the correct number

of impulses can be chosen based on the robustness criteria in Chapter HI.

However, the damping ratio normalization generates the most error and is actuaUy

the determining factor for the number of impulses. Table 4.5 displays the normalized

damping ratios, _'J_', versus joint coordinates. This normalized data is very random in

appearance which is a direct result of the way the analyzer linearly approximates the

damping ratio. Using the largest normalized ratio of 4.5, Figure 3.13 suggests that the

modified command shaping method should output four impulses to reduce vibration.
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Table 4.4 Normalized Frequencies vs. Joint Coordinates

f/f,

4O

50

6O

6O

0.992

0.980

0.961

7O

0.998

0.980

0.969

02 (deg)

I 8o
1.02

0.994

0.970

1.04

90

1.03

1.03

0.982

100

0.990

0.949

0.970

I 107

1.06

0.978

0.924

70 1.02 1.04 1.07 1.07 1.06

80 1.10 1.03 1.05 1.00 1.02 1.05

90 0.956 0.956 0.949 0.958 0.9780.956

0.974

1.02

0.981

1.011.03

0.982

1.00

100 0.988 0.980

109 1.04

0.978

1.02

Table 4.5 Normalized Damping Ratios vs. Joint Coordinates

_'J_" O: (deg)
ii

Ol

(d_g)

4O

60

1.63

70

1.73

80

2.12

I 100

0.30
ii ii

107

1.32

50 1.24 1.06 0.846 4.49 4.13

60 1.12 0.948 1.I0 1.16 0.547

70 0.734 0.582 0.764 1.00 O.831

80 0.917 0.783 0.870 1.28 1.29
i

90 0.921 0.865 1.01 1.58 1.45

100 0.913 0.875 0.980 1.29 1.13

0.940 0.952

1.68

0.959

1.164

0.825

1.12

1.11

1.23

1.11 1.240.781 0.800
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Now that the number of output impulses has been determined, the modified

command shaping technique can be implemented to reduce vibration. The modified

shaping method takes each input sample and replaces it with four output impulses that

do not excite the first natural frequency of RALF. The required values of damped

natural frequency and damping ratio needed to calculate the impulse amplitudes and their

starting times are found from Equations (4.5) and (4.6).
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CHAFFER V

CONTROL IMPLEMENTATION AND RESULTS

5.1 Control Structure

The original input shaping method devised by Singer was entirely feedforward in

design [38]. The desired (x,y) coordinate positions were transformed into desired joint

angles using a Jacobian before applying the input shaping algorithm. This feedforward

scheme provides little robustness to noise disturbances or to model uncertainty. To

overcome these problems, Hillsley and Yurkovich [18] applied a composite control

strategy which utilizes input shaping with a feedback scheme.

The control design for RALF uses an adaptive; proportional plus derivative (P.D.)

feedback strategy derived by Yuan [49] with the addition of modified command shaping.

Yuan's control algorithm was chosen because it compensates for unmodeled modes and

nonlinearities of the system. The modified command shaping technique is designed to

eliminate the first natural frequency of RALF discussed in Chapter IV. The block

diagram of the comprehensive control system is shown if Figure 5. I. Since the input to

the control system is desired angles, it is easily implemented with the master arm which

allows the user to specify a desired end-position while it records desired joint angles.

This control implementation also allows other pre-computed trajectories to be input into

the system for means of comparison.
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= ®,..0h

Figure5.I Block Diagram of ControlSystem

5.2 Input Trajectories

To demonstrate the reduction in tip vibration, the modified command shaping

technique is compared to the original P.D. controller for different input trajectories. For

these comparisons, the trajectories are pre-computed to ensure an equivalent basis for

comparing vibration reduction. The principal trajectory is a three-foot diameter circle

located above the first axis with-a completion time of nine seconds. Figure 5.2 shows

the location of the circle relative to the workspace of RALF. This location was chosen

because thereisa largeenough variationin system naturalfrequencyto change the

discrete-time period, deln. A sinusoidal perturbation signal with variable frequency is

then added to the radius parameter of the circle to induce vibration into the system.

The vibration of the tip is recorded using two different methods. The first

method is very similar to the way the frequency data was obtained in Chapter IV. The

robot is commanded to follow the desired circle trajectory eight times which eliminates

noise effects and allows reliable averaging of the data. The analyzer records the

transverse acceleration response at the tip and computes the power spectrum of the data.

The magnitude of the frequency response is the root-mean-square of the acceleration and
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Figure 5.2 Principal Circle Trajectory

isdisplayedinunitsof decibels(dB). Recallthe definitionof decibelsis

number of decibels = 10 logloA (5.1)

where ,4istheamplitudeinquestion.The frequencyresponseforeach controlstrategy

isthencompared to determinewhich controllerhas thesmalleramplitudeof vibration.

The secondmethod isa visualapproachtoexamine thetipvibrationof therobot.

A light-emittingdiode (LED) is attachedto the end-pointof RALF and then one

revolutionof thedesiredcircletrajectoryiscommanded. By leavingtheapertureon a

35 mm camera open,theactualend-pointpathisrecorded.Of course,specialmeasures
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are made to ensure that the LED is the only light source imprinted on the negative. At

the end of the trajectory, the flash is triggered to reveal the robot configuration.

5.2.1 Trajectory One - Circle With No Perturbation

The first trajectory is the principal circle with no perturbation added. Figure 5.3

shows a comparison of the frequency response between the P.D. control and Singer's

original input shaping substituted for the modified command shaping. The magnitude of

the frequency response for the input shaping method is greater than that for the P.D.

routine.

"i -20
-40

-60

'_ -8o

Frequency Response
Perturbotiof_ Frequeecy: 0.0 HZ

, , i i t ,

1{:)0 101 1{:)2

Co9 f (Hz)

Figure 5.3 Frequency Response of RALF
P.D. vs. Input Shaping
No Perturbation
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The increase in magnitude of the frequency response for the input shaping method

at the 4.8 Hz frequency value denotes a vibration of the system at the first natural

frequency. This vibration is provoked by the inability of the input shaping to handle

varying system parameters. The sharp peak in the frequency response at the 10 Hz

frequency value is the second natural frequency. However, the modified command

shaping technique is only designed to reduce the vibration at the first natur_ frequency.

The induced vibration caused by the input shaping method can be seen visually

in Figure 5.6. The path followed by the end-point using the ordinary P.D. controller is

shown in Figure 5.5. The actual path followed by the end-point of RALF is not a

precise circle because the P.D. controller does not drive the steady state joint error to

z_ro.

By implementing the modified command shaping technique, the induced vibration

is eliminated. This result is evident in the frequency response of Figure 5.4 and the

picture given in Figure 5.7. From Figure 5.4, the magnitude is reduced by 20 dB at the

system natural frequency of 4.8 Hz. This results in a vibration that is only 1% of the

amplitude of the original P.D. vibration for this specific frequency. Comparing Figure

5.5 and Figure 5.7, the modified command shaping technique generates almost the same

tip motion as the P.D. controller even though the 4.8 Hz frequency component is

missing.
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Figure 5.4 Frequency Response of RALF

P.D. vs. Modified Command Shaping

No Perturbation

Figure 5.5 Picture of Tip Motion Using P.D. Control
No Perturbation
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Figure 5.6 Picture of Tip Motion Using Input Shaping
No Perturbation

Figure 5.7 Picture of Tip Motion Using Modified

Command Shaping - No Perturbation
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5.2.2 Trajectory Two - Circle With I I-Iz Perturbation

This trajectory, shown in Figure 5.8, is the principal circle with a 1 Hz sine wave

with an amplitude of 1.5" riding on the radial component of the circle. This trajectory

m

tllO

itlo
)J.

tso

14o
4 -44 -ao -B -I0 • I0

x - ,,uik. r..)

Figure 5.8 Circle Trajectory with 1 Hz
Perturbation -

should contain nine "bumps" around the circle since the period is nine seconds. The

frequency response of the modified command shaping versus the P.D. control is shown

in Figure 5.9. Since the command shaping technique was not designed to eliminate 1 Hz

vibration, the two control schemes show comparable results for this frequency range.

However, the modified command shaping reduced the magnitude of vibration by 18 dB

at the system natural frequency value of 4.8 Hz. This results in a vibration that is 1.6%

of the amplitude of the original P.D. vibration at this particular frequency.
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Figure 5.9 Frequency Response of RALF
P.D. vs. Modified Command Shaping
1 Hz Perturbation

5.2.3 Trajectory Three - Circle With 4.8 Hz Perturbation

The purpose of this trajectory, given in Figure 5.10, is to excite the first natural

frequency of the system. Figure 5.11 displays the frequency response comparison for

this trajectory. The difference in magnitude is 32 dB at the system natural frequency of

4.8 Hz which corresponds to 0.06% of the original P.D. vibration amplitude for this

particular frequency. The visual effects are evvn more impressive. Figure 5.12 shows

the tip motion for the P.D. control effort while Figure 5.13 displays the tip motion for

the modified command shaping. At least visually, the modified command shaping

method appears to completely eliminate the vibration.
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Figure 5.11 Frequency Response of RALF
P.D. vs. Modified Command Shaping
4.8 Hz Perturbation
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Figure 5.12 Picture of Tip Motion Using P.D. Control
4.8 Hz Perturbation

Figure 5.13 Picture of Tip Motion Using Modified

Command Shaping - 4.8 Hz Perturbation
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5.2.4 Trajectory Four - Circle with 10 Hz Perturbation

The final circle trajectory, displayed in Figure 5.14, demonstrates the ability of

the modified method to reduce system frequency vibration for input signals that contain

higher frequency components. Figure 5.15 shows a reduction in magnitude at the

Itw_un_mli_ Ti11qumml_ 10.0 HE

280

tSO

i"

tllO

i i | i _0 " " "1_.410 .-410 _10 - -io o Io

Figure 5.14 Circle Trajectory with 10 Hz
Perturbation

4.8 Hz frequency location of 9 riB. This results in a vibration that is 12.6% of the

amplitude of the original P.D. vibration for this particular frequency.

66



o

m

m
c

e
h-

-a

¢¢

-2O

-4O

-6O

-80

-IOO
I0-I

Frequency Response
Perturbotion Frequency: I 0.0 HZ

.... P.O.
l_.c.s.

I I I I t "''n I I I I I II1|

10 0 101

Log f (Hz)

........ m

102

Figure 5.15 Frequency Response of RALF
P.D. vs. Modified Command Shaping
10 Hz Perturbation

5.2.5 Trajectory Five - Pseudo-Step

A step input is often given as a test input because it theoretically contains all the

frequency components. To simulate a step, a cycloidal motion in joint space was created

with a duration time of 0.2 seconds [30]. Using this pseudo-step input, a ten degree step

was simultaneously given to each joint and a time record was taken of the transverse

acceleration response at the tip. Figure 5.16 shows the desired tip motion with the

starting position at (-.4.7,142.9) and Figure 5.17 displays the transverse acceleration

response. Clearly, the amplitude of the time response for the pseudo-step input is

reduced using the modified method. However, notice the delay in the modified command
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Figure 5.17 Pseudo-Step Response of PALl:
P.D. vs. Modified Command Shaping
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shaping method's pseudo-step response. This delay is present because the pseudo-step

trajectory holds the robot in the starting joint configuration for ten clock cycles. Since

the sampling rate is 50 Hz, this time delay is 0.2 seconds. Although the robot is

supposed to remain stationary during the hold time, a slight error signal is developed in

the control algorithm which causes the robot to move. This tip motion is large enough

for the amplitude of the transverse acceleration to trigger the analyzer. This slight tip

motion is verified in the Figure 5.18. When the modified command shaping method is

implemented, the amplitude of the small error signal is reduced so that the transverse

acceleration is not large enough to trigger the analyzer. Therefore, the delay experienced

by the modified command shaping method is actually the hold time of the pseudo-step

trajectory.

Figures 5.18 and 5.19 show the pseudo-step responses for each of the control

schemes. The sLight tip motion during the hold porfi'0n of the trajectory is very evident

and is even more pronounced in the modified command shaping technique case. The

reduction in vibration of the modified command shaping method is apparent from the

smoothness of the trajectory. However, the tip position overshoots the desired final

position. The feedback nature of the control structure together with an underdamped

system is believed to generate this undesirable overshoot. Had the method been

implemented in a feedforward manner as Singer did, this overshoot might be eliminated.
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Figure 5.18 Picture of Tip Motion Using P.D. Control
Pseudo-Step Input

Figure 5.19 Picture of Tip Motion Using Modified

Command Shaping - Pseudo-Step Input
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CHAFFER VI

CONCLUSIONS

6.1 Summary

Singer's original input shaping idea was introduced and explained using the

equation of motion for a simple second-order system. The constraint equations needed

to yield a vibrationless system were discussed and then multiple impulse amplitudes were

derived for several constraint conditions. A vibration error expression was derived based

on the ratio of the multiple impulse response to the impulse response of a second-order

system. The residual vibration for each case was graphed to determine the effects of

deviation in system parameters. The input shaping method was shown to actually

increase the residual vibration in certain situations when the system parameters are not

accurately specified.

The main intention of this research was to reduce end-point vibration in a

teleoperated system while preserving the usefulness of the system motion. Results

verifiedthattheinputshapingmethod can actuallyinducevibrationin systemsthathave

varyingparameters.Therefore,a modifiedcommand shapingtechniquewas developed

to alleviatethisproblem. By varyinginputperturbationsto trajectoriesin a range of

possibleuserinputs,themodifiedcommand shapingtechniqueprovedtoreducevibration

at thesystem'sfirstnaturalfrequency.The reductionin amplitudevariedfrom 87.4%
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for the high frequency perturbation to 99.94% for a perturbation frequency near the

system resonance. The acceleration response of the command shaping to a pseudo-step

input was smaller in amplitude than the regular P.D. control. However, the pseudo-step

response of command shaping displayed overshoot which may be undesirable in many

end-point positioning tasks.

6.2 Contributions

The major contributions of this research are the implementation of teleoperation

on RALF, the new perspective of residual vibration, the visualization of tip motion and

the derivation of a modified command shaping technique.

The implementation of teleoperation on RALF allows users to specify any end-

point trajectory within the workspace. The ability to perform teleoperated experiments

such as cutting and end-point bracing are now possible.
__

The new definition for residual vibration gives a clearer representation of the

input shaping method. It demonstrates that the input shaping method may not be

effective in reducing residual vibration in all cases.

The visualization method for viewing tip motion using a LED permits easy

evaluation of tip vibration. The method can also estimate the ability of a system to

follow desired tip trajectories.

Finally, the modified command shaping technique expands the use of the original

input shaping idea to systems with varying parameters. The induced vibration caused

when the input shaping method is applied to a variable frequency system is eliminated
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by the command shaping method. By realizing a change in the discrete-time period, the

impulse input is modified to eliminate the possibility of producing the vibration.

6.3 Future Work

The main concern to be addressed in future research is the elimination of

overshoot in the step response of RALF. To have an effective teleoperated system, the

end-point must be positioned without overshoot. This could be accomplished using the

modified command shaping technique in a feedforward arrangement that is combined

with a feedback control scheme. Another possibility is the implementation of inverse

dynamics with the modified method to accurately position the end-point of RALF.

The second goal is to implement the modified method to eliminate the second

natural frequency of RALF. This would require a faster control system than the

MicroVAX can provide. By using a PC, faster computation and A/D rates are possible

and the elimination of the first two natural frequencies could be achieved.

Finally, the effects of the modified command shaping technique on the stability

of the overall control structure will be investigated. The time delays produced by this

shaping method must be better understood to develop a control scheme that has accurate

end-point tracking capabilities without overshoot.

73



APPENDIX A

RIGID BODY TRANSFORMATIONS FOR RALF

Forward kinematics of rigid bodies is used to determine the position and

orientation of the end-effector on a manipulator. Inverse kinematics, on the other hand,

deals with the problem of finding all the possible joint configurations given the end-

effector position and orientation. Questions often arise with the uniqueness of a given

solution, or even if one exists, with the inverse case.

By using matrix transformations, kinematic equations relating the end-point of a

manipulator to its base can be derived. The process involves representing each degree

of freedom of a manipulator with an individual coordinate system. Each matrix

transformation relates one coordinate system to the previous one. The overall matrix

transformation from the end-point to the base of a robot is obtained by multiplying all

of the matrix transformations in the proper order. Most robotic texts give a thorough

discussion of matrix transformations [I 1,44].

Although RALF is not a rigid body, the forward and inverse kinematics can be

derived to give an approximate solution for the end-point location and orientation or the

joint configurations. Consider Figure A.I which shows the rigid body coordinate

systems used for RALF.

74



Figure A. 1 Rigid Body Coordinate Systems for RALF

The matrix transformations relating each frame arc

cos(el) -sin(e l) 0 o"

sin(el) cos(e i) o o

o 0 1 0

o o o 1

(A.1)
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IT=

_(e 2) -sin(e2) o L_'

sh2(e2) c,z(e_) o L_

0 0 1 0

0 0 0 1

(A.2)

IT=

1 o o I..2

0 1 0 0

0 0 1 0

0 0 0 I

(A.3)

The overall matrix transformation from the end-point to the base of RALF is found by

multiplyingtheindividualtransformationsas follows

_T= °IT IT IT. (A.4)

The resultingoverallmatrixtransformationis

3°T=

cos(ez÷e9 -m(ez,-e_)

sin(e I +e 2) cos(e I +e a)

o o

o o

o _cos(ex+e 2)+Lxcos(ez)-L3sin(e_)

0 _sin(ez+e 2) +Llsin(e 1) +/._cos(e l)

1 0

0 1

(A.5)
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Recall that the fourth column of the overall matrix transformation is the position vector.

Therefore, the (x,y) coordinates of the end-point are given in base coordinates by

x =/,.2cos(or +8 2) + Llcce(8 s) - L3sin(O s) (A.6)

y - L2_(O 1+02) + LI_B(O1) + L3coi(Ol). (A.7)

Given the two joint angles, the (x,y) coordinates of the end-point can be calculated using

Equations (A.6) and (A.7).

Now consider the inverse problem.

(A.6) and (A.7) yields

Taking the sum of the squares of Equations

x2 + y2 = L_ + /._ +/_ + 2L:L2cos(0 2) + 2L2/.,3sin(Oa). (A.$)

Define K by

(A.9)

so that Equation (A.8) becomes

K-' 2L1L_cos(O 2) + 2L_L3_-n(Oz). (A. 10)
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Solving for cos(02) from Equation (A. 10) yields

E-2_m(O=) (A.II)_s(o_) =
2Ll/. _

Notice that Equation (A.11) can not be explicitly solved for 02. But recall the

trigonometricidentity

sin=(02) + co_:(02) - 1. (A.12)

Squaring Equation (A. 11)

o_a(e2 ) = /: -4 K_sin(e=) +4/_/_,fin2(e 2) (A. 13)

and substituting into Equation (A. 12)yields

sin2(O2) = 4/"_L_-ff'_*4r/'_/'_sin(O2)-4L_/'_sin=(O2) (A.14)

Equation (A.14)can be simplified to

_C02) =
r/._ a L1i 4_ (/._ +l.,_) - K2 (A.15)
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Since02 can not be less than zero, Equation (A. 15) becomes

(A. 16)

Substituting Equation (A. 16) into Equation (A. 11) produces

(h.17)

Using Equations (A. 16) and (A.17), the solution for 02 becomes

02 = atan2 K L3 ÷LI ¢ 4 I_ ( L _ + l_ ) - l_ ] (A.18)

To solve for 0_, Equations(A.6) and (A.7) are expanded to produce

x = (L_cos(02)+Lx)cos(¢h) - (L:sin(02)+L_)sin(0x) (A.19)

y = (z__(o2)+_ oos(O,)+(z_oos(e_)+L,)_(0,). (A.20)
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Equations (A. 19) and (A.20) are solved for sin(0t) and cos(0s), which are

sin(el) = (A.21)

c_e I) =
x(_ c,z(e2)+_)+y(_m(e=) +_)

(A.22)

Using Equations (A.21) and (A.22), the solution for 0_ becomes

_-x(_sin(O2) +_) .,-yCL_cos(O=)+L_) 'l
e_ = _ x( LacosCe=)+Lx)+Y( l..zsin(8:) +l_) ).

(A.23)
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So, knowing the (x,y) position of the end-point of RALF, the joint coordinates can be

computed using the following three equations:

(A.24)

0 2 = _2

/eL, -/.__

(A.25)

-x(z_m(e 2)+_) +y(z_ cosCe_)+z,_)
O_ = atan2

x(L_co_Ce2)+L_)+y(L_m(e2)+_) )
(A.26)
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,_[q_NI)IX B

DIMENSIONS OF MASTER ARM

Figure B. I shows the dimensions of the master arm used by the operator to input

desired joint commands. Potentiometers, listed in Appendix C, are placed at each joint

of the master arm to translate the joint commands input by the user into actual joint

motions of RALF.
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13/32" QD.

0.125"

Link 2

10" 10"

HQ't:eri_t Used: 5/16" Aluminum

Figure B. 1 Dimensions of Master Arm
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APPENDIX C

EQUIPMENT LIST

ELECTRONIC COMPONENTS

Device:

Model No.:

Serial No.:

Company:

Device:

Model No.:

Serial No.:

Company:

Device:

Model No.:

Serial No.:

Company:

Device:

Model No.:

Serial No.:

Company:

Device:

Model No.:

Sedal No.:

Company:

Device:

Model No.:

Serial No.:

Company:

MicroVax II

VS21W-A2

WF61305$0fi

Digital Equipment Co.

Real-Time Clock

DT2769

187824-C453

Data Translation

Analog I/O System
DT2785

188872-C496

Data Translation

Dynamic Signal Analyzer
I-IP3562A

2502A00718

Hewlett-Packard Co.

Disk Storage Unit

HPgI22D

2518A44227

Hewlett-Packard Co.

Supply/Amplifier - Joint one of RALF
BOP36-1.SM

F79808

KEPCO
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Device: Supply/Amplifier - Joint two of RALF
Model No.: BOP36-5M

Serial No.: F105062

Company: KEPCO

Device:

Model No.:

Company:

Potentiometer - Joint one of Master

6637
Bourns

Device:
Model No.:

Company:

Potentiometer - Joint two of Master

6637
Bourns

SENSORY COMPONENTS

Device:

Model No.:

Serial No.:

Company:

Device:
Model No.:
Serial No.:

Company:

Device:
Model No.:

Serial No.:

Company:

Device:
Model No.:
Serial No.:

Company:

Device:
Model No.:
Serial No.:

Company:

LDT Position Sensing System - Joint one of RALF
011020050100

20658-02-002P

MTS Systems Corp.

LDT Position Sensing System - Joint two of RALF
011020050100

20658-02-001P

MTS Systems Corp.

Analog OutputModule - Jointone of RALF
0110200503105001

20658-05-001P

MTS Systems Corp.

Analog Output Module - Joint two of RALF
0110200503105001
20658-04-001P

MTS Systems Corp.

ICP Accelerometer

308B

10430

PCB Piezotronics
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Device: Power Unit
Model No.: 480D06
Serial No.: 5163

Company: PCB Piezotronics

HYDRAULIC COMPONENTS

Device:A.C. Motor

Model No.: 2U2 I00

SerialNo.: D-75

Company: Delco

Device: Vickers Variable Volume Piston Pump
Model No.: F3-PVB20-FRS-20-C-11

Company: Sperry Rand Corp.

Device:

Model No.:
Serial No.:

Company:

Hydraulic Valve - Joint one of RALF
73-102A
144

Moog, Inc.

Device:
Model No.:

Serial No.:

Company:

HydraulicValve -Jointtwo of RALF
73-I02A

147

Moog, Inc.

Device:

Model No.:

SerialNo.:

Company:

Hydraulic Cylinder - Joint one of RALF
H-PB-2
37781J

Atlas Cylinder Corp.

Device:
Model No.:

Serial No.:

Company:

Hydraulic Cylinder - loint two of RALF
N2C-3.25x40
5C8205-065-1B

Hydro-Line Mfg. Co.
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//

APPENDIX D

IMPULSE RESPONSE OF A SECOND-ORDER SYSTEM

_#/////////////////.

c

m

F(t)
Figure D. 1 Spring-Mass-Damper System

Recall that Newton's second law is

#=ma. (D.1)
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Newton's secondlaw applied to the simple system shown in Figure D. 1 yields

dx d=x
F(t) - kx - ¢_ = m

dt dt 2
(D.2)

which can be rearranged to get

d=z dx
m_+c-- + kx = F(O.

dg2 dt
03.3)

Dividing through by the mass, the system equation becomes

d=z c dr, k F(O
_ + _ + _X z _.

dr 2 m dt m m
(D.4)

By definition, the natural frequency of a second-order system is

(D.5)

and thedamping ratiois

¢
(D.6)
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Substituting into the system equation,

(0 2 fD.7)

By defining an impulse force as

f(O = F(t) (D.8)
¢

the system equation becomes

d'x ,odx+ ¢,=x- _,,2f(O (D.9)

Let the impulse force have the form

/(0 = A s (t- to) (D.10)

where A is an amplitude and 8(0 is the Dirac delta function. A Dirac delta function is

defined mathematically in Equation (D.11) and is displayed in Figure D.2 on the

following page.

f" 6(t - to) = I (D.I1)
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.ml

-Ii

1
Q

Figure D.2 Dirac Delta Function

±

From Figure D.2, it is apparent that the Dirac delta function has an amplitude of

1/(time). The impulse function f(O, given in Equation (D.10), must have units of

length. This results in the amplitude A having units of (length*time). It is sometimes

very helpful to conduct unit analysis of this type to better understand the physics of the

problem.

The new system equation becomes

._. +2_ ..._ (D.12)

Recall the definition of the Laplace Transform

F(s) - fef(t)e-"dt.
(D.13)
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Taking the Laplace Transformof the systemequationassumingzero initial conditions

yields

s=X¢s)+ 2_%xX(s) + _.=X(s) = A_.=e"" (D.14)

which can be rearranged to get

A _2 @ -ate
X(s) = . (D.15)

s _ * 2C,_.s * o.=

Partial fraction expansion of the equation yields

X(s) - jA _.t "re / 1 _ 1 /" (D.16)

The inverse Laplace Transform of this expression is

•(,)_ j.4,.,. (_(,..,..,_-_)(,_,0)__(,.,._,..,_)(,_,o))CD._7)
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which is just

xC:)- A_.e'C'.("t,)leJ..vri:-_("t,)__.e-1-.v_(t-t.)l"
2j )

(D.18)

Recalling the Euler representation for sine is

e/,t _ e-/"
si_=) =

2/
(D.19)

the second-order system response to an impulse force becomes

xCt) -
A - C%(: - to)

One _.20)
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APPENDIX E

SUMMATION OF TWO SINUSOIDS

The following two sinusoidal responses,

Xx(t) - B l sin(a t ÷_x) (E.1)

_(0"B2sbxCa t+# 2) (E.2)

can be linearly combined to form a total response, x(t), where

x(O =B_fmCat +4'x) ÷B2siaCat+4'2). (E.3)

Recall that

sin(a ÷/,) =sin(a)cosCb) + sin(b)cos(a). (E.4)

So the total response becomes

x(0 = Bl[sin(at) cos(_x) + sinC_x) cos(at)] +Ba[sin(at)c°s(_2) + sin(_a)c°s(at)] (E.5)
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which is just

x(0 - [B1cm(_) ÷B2om(¢2)]sin(_0 ÷[B#n(¢_) ÷B#.(_2)] cos(=0. Cm.00

Recall that the Euler representations for sine and cosine are

+in(o)= d"-e'J" CE.+0 ms(o) =
2/

(E.8)

Substituting,

(E.9)

Rearranging the coefficients of the exponential terms,

x(O=[(e_cos(¢,)+e2cos(¢2))÷/(anm(¢,)+e#n(¢2))]_

- [(e_cos(¢t)+B2cos(4_))-/(e#a(Ot) +e2sin(¢2))]_j _ .

(E.IO)

Recall that any complex number can be written in the form

Z = •e jO _.11)

where r is the magnitude and 0 is the phase.
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Using this idea, x(t) canbe expanded as follows

.j,...,{.lt,_,,)+.+,._+.,)t] .- si[Bxcm(+_).a2cm(<_2)]2+[s,en(4_p+ez_o(4,pl2eX',_*,)'_°'<_lle"
_2j

(E.12)

and simplifying,

•I X XJ"_*')*'+'_'I("_ll- • X XJ,_*,)*+',°"('_II

2j

(E.13)

and recalling the Euler representation for sine,

. m[,,+,,,.,.,[B,,_<+,>_<,_)II
ta,,:o+(+,,)+e+_._++))jt

_.i,4.)

95



This result can be rewritten as

_0 =B.,,m(a:+*) (E.15)

where

B.., - _/[sF.m(_ x)+Szcos(4))]2. [s_sin(4h).,-s_(4,2) ]_ (E.16)

, . ._, ( B:mc,,}-B:mc,:_] _.17)
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This result can now be generalized. The total response, x(O, which is the linear

combination of N sinusoidal responses can be written as

x(O- B._Jin(ffit+$) (E.18)

where

2[.÷ _ Bksin('l'_)
k-!

_.19)

H

H

ejcosC#k)
k.,!

(E.20)
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APPENDIX F

CALCULATIONS FOR TWO IMPULSES

The constraint equations that must be satiafied are

Blcos(_ _) ÷ B2c_(} 2) - 0 (F.1)

B_Jin(},) + s2m(} _) - o (F.2)

where

AtOm -{_,,(t -:e)
Bk ffi £ (1::.3)

and

_k ffi - Oat0k 1_'_- _2"
0::.4)

Notice that there are four unknowns (A_, A:, toz and to9 and only two constraint

equations. The other two constraints are the starting time of the first impulse and the

normalization of the amplitudes.
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Pick toz = 0 so that Equations (F. 1) and (F.2) become

B_,,,-B,,c,os(4_2)- o (F.5)

B_sin(4_) -0. 0:.6)

The two solutionsthatexistforEquation(I=.6)areeitherB2 = 0 or

_2 = l_ (F._)

where n = -t-0,1,2,3,.... Avoiding thetrivialsolution,pick n = -I so that

m o_ a
(F.8)

FromEquation 0::.4), the secondimpulse occurs in time at

t02 = (F.9)

Substituting Equation (F.8) into Equation (F.5) yields

81 mB 2 • (F.10)
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At t = to2, Equation (F. 10) produces

AI_ n Aataa e-cv,(tea tea)e" Cu-(tu'bl) ffi (F.11)

or

. ____L_=

a2 -Ale _.
(1:.12)

If the amplitudes are normalized so that

1-1

(F._3)

and let

(F. 14)
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then the amplitudes of the two impulses and the times at which they occur are

I (F. 15) to1 = 0 (F. 16)
al ffi I+M

M (F.17) to2 " • (F.18)

Now that the amplitudes and times of the impulses are known, the theoretical impulse

response of a second-order system can be found using the results from Appendix D.
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APPENDIX G

CALCULATIONS FOR THREE IMPULSES

The constraint equations that must be satisfied are

B:cos(,h) +B2cos(,2),B,_(#,) - o (G.1)

Bt,iaC4h)*B2m(,2) +B,m(¢3) = 0 (0.2)

BltoleOs(4h). Batoacos(4,,). B, to, cos(¢ 3) - 0 (0.3)

(0.4)

where

A,_j -¢,.,,O-ta)
Bk (0.5)
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and

_, - - ..to,_/l - C2. (G.6)

Noticethatthereare sixunknowns (Aa,Az,Aa, tot,t_ and t_)and only fourconstraint

equations.The othertwo constraintsare thestartingtime of thefirstimpulseand the

normalizationof theamplitudes.

Pick tot= 0 so thatEquations(G.I)through(G.4)become

B_+B:os(#2),B:m(# s)- 0 (G.7)

B2si.n(_2) +R:in(#3) = o (G.8)

B2t02cos(_2)+B:o3COs(_)= 0 (G.9)

B2to2Sin(4J2)+B3to3Sin(_ 3) = 0. (G.Io)

From Equation(G.8),

B2sin(4_2) - _ Bssin(4_s) (G.ID
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which is substituted into Equation (G. 10) to produce

• _(to_- toa)siu(_3) - o. (G. 12)

The three solutions that exist for Equation ({3.12) are

B 3 =0 (G.13)

tos- to= - 0 (G. 14)

(G.15)

where n = + 0,1,2,3, .... Avoiding the trivial solutions, pick n = -2 so that

¢3 = -21_. (G.16)

From Equation (G.6), the third impulse occurs in time at

(G.17)
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Substituting Equation (G. 16) into Equation (G.8) yields

B2sia(_2) - o. (G. 18)

The two solutions that exist for Equation (G.18) are

B2 - o (G.19)

ez " n _ (G.20)

where n = + 0,1,2,3, .... Avoiding the trivial solution, pick n = -1 so that

(I)._= - _- (G.21)

From Equation (G.6), the second impulse occurs in time at

to2- _), l_rE____z. (G.22)

Now that the times at which the impulses occur is known, the amplitudes of the three

impulses can be found. Substituting Equations (G.16) and (G.21) into Equations (G.7)

and (G.9) produces

Bl -B2+Ba - 0 (G.23)
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- B=to2 ÷ B3to3 = O. (G.24)

From Equations (G. 1_ and ((3.22), the relationship between the times is

to3 = 2t02. (G.25)

Substitutingthistime relationshipintoEquation(6.24)yields

B 2 ,, 2B z (G.26)

B 3 = B l. (G.27)

At t = to2, Equation (G.26) produces

A2°a e- Cw'(t_-t°')= 2AI _"e - C_a(t0_-t01) (G.28)

or

A2 . 2Ale ¢T_
(G.29)
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At t ffi to3, Equation (G.27) produces

A3c_ n . C% (to3 - te_)
£

- Cu, (to3 - tos) ((3.30)

or

A 3 = Ale

(G.31)

If the amplitudes are normalized so that

_A_- 1
|-1

(G.32)

and let

(G.33)
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then the amplitudes of the three impulses and the times at which they occur are

AI . 1
1 + 2M + M 2 (G.34) tol = 0 (G.35)

A2 = 2M (G.36) to= = (G.37)
I+2M+M 2 _m Ifi'_-_2

M 2 2 s_

A 3 = (G.38) 1o3 = _ _2 (G.39)I + 2M +M 2 ¢0_/I

Now that the amplitudes and times of the impulses are known, the theoretical impulse

responseof a second-ordersystem can be found usingtheresultsfrom Appendix D.
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APPENDIX H

CALCULATIONS FOR FOUR IMPULSES

The constraint equations that must be satisfied are

Blcos(_l) + B2¢os(_2 ) + B3cos(_3) + B, cos(_,) = 0 (I'I. 1)

B, sin(_,) + Bzsin(_ 2) + B3sin(, 3) + B, sin(_,) * 0 (I-I.2)

B, tozcos(*,) + Bztozcos(4,z) + B, to, cos(4,,) * S, to, cos(4_,) - 0 _.3)

Blt0lSitl(_l) + B2t0zSln(_)2) + B_to3Sill(_b3) + B4to4Sin(_)4) = 0 (I'I.4)

2
Blfo21CoS(_I ) + _2to2C_S({_2) + B3f_3co6({_3 ) + g4to24Cos({_4) = 0 _H.5)
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where

B_" e CH.'_

and

¢_k = - 6)xtok _- _2"
_.8)

Notice that there are eight unknowns (Al, ,42, ,43, A4, tol, t_, to3 and t_ and only six

constraint equations. The other two constraints are the starting time of the first impulse

and the normalization of the amplitudes.

Pick tol ffi 0 so that Equations (H. I) through (H.6) become

B_.+B2cos(4_2) .,-B3c.os(4_3) +a,c,os(4_,)= o ('H.9)

B.,m(_2) +B.3m(4_3)* B,,,m(4_,)= o (I"1.10)

Bzto2COs(4_2)+B3to3cos(4_3) + B4to,COS(4_)- 0 (H.11)

B_to_Sin(4_2) +B3to3Sin(4__) + B_to,SiU(4_,) - 0 (H.12)
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(H.13)

B2t_:_(,2) +B3to23m(,_)+B,to2,m(l,,) - o. ([-I.14)

From Equation (H. 10),

B2sinC4_2)" - [Bssin(¢3) ÷ B, sin(¢,) ] (H.15)

which issubstitutedintoEquations(H.12)and (H.14)toproduce

B3(tos - to2)Sin(4_s)+ B4(to4 - to=)Sin(¢D - 0 (H.16)

B,(,o',-,o',)m(,,)+B,(,o',-,o_;)_,(*,)"o. (H.17)

SolvingforB3 from Equation(H.16)and substitutingintoEquation(H.17) yields

B4(to,-tos)Sin(¢4) = 0. (I'I.18)

The threesolutionsthatexistforEquationCrI.18)are

B4=0 (H.19)
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to4-tos- 0 (I-I.2o)

_ sfl_ (H.21)

where n ffi + 0,1,2,3, .... Avoiding the trivial solutions, pick n ffi -3 so that

_4 = -3_. (H.22)

From Equation (H.8), the fourth impulse occurs in time at

t0 4 m

3Z

(H.23)

Substituting Equation (H.22) into Equation (H. 16) yields

B3(to3- :o2)sin(ch3)= o. (H.24)

The three solutions that exist for Equation (I-I.24) are

B3=0 (H.25)
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to3 - to2 - 0 (H.26)

(H.27)

where. = + 0,1,2,3,.... Avoiding thetrivialsolutions,pickn = -2 so that

4)3 = -2'_. _.28)

From Equation(H.8),thethirdimpulseoccurs in timeat

2_
tO3 = -- •

¢1-¢oa

(8.29)

Substituting Equations (H.22) and (H.28) into Equation (H. 10) yields

B2sin(@2) - o. (H.30)

The two solutions that exist for Equation G-I.30) are

B2=0 (H.31)
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i_2 sn_ (1-1.32)

where n ffi ± 0,1,2,3, .... Avoiding the trivial solution, pick n ffi -1 so that

_}2 " -_" (I-I.33)

From Equation (H.8), the second impulse occurs in time at

to2= __. (H.34)

Now that the times at which the impulses occur is known, the amplitudes of the four

impulses can be found. Substituting Equations (H.22), 0-I.28) and (H.33) into Equations

(H.9), (H. 11) and (H. 13) produces

BI-B2+B a-B_ - 0 _.35)

-B2to2+Batoa-B4to4= 0 (H.36)

- B2tg_+B,to_- B,to_4- o. (I"I.37)

114



From Equations (8.23), (8.29) and (8.34), the relationships between the times are

to3 = 2 to2 (8.35)

tO4 " 3 to2.
(1-I.39)

Substituting these time relationships into Equations (8.36) and (8.37) yields

B2 - 3B t (8.40)

B3 " 3B 1
(8.41)

B4 "B 1• (8.42)

At t - to2, Equation (8.40) produces

A2fa_m •-_wa(t_t-t0:) . 3A1 °'. e" C¢_'(t02-tOt) (8.43)
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or

. C_._L_=

A2 - 3Ate
(H.44)

At t = toj, Equation (I-I.41) produces

A3{_ n - Cu..(to_ - to3)
• =

¢o. Oe3"t0t)
(H.45)

or

A s = 3Ate.

2Cw
(I-1.46)

At t = to,, Equation (H.42) produces

A4_ n
• - Co. (:o, - t0,) A t C_=- •

- Cu. (ru - tot)
(I"I.47)

or

A 4 =Ale

_.48)
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If the amplitudes are normalized so that

|.1
(_.49)

and let

(H.50)

then the amplitudes of the four impulses and the times at which they occur are

AI = l
I + 3M + 3M 2 + M 3 (H.51) tol = 0 fI-I.52)

A2 = 3M (H.53) to2 _ n

I+3M+3M 2+M s ca i_-___2
(I-I.54)

A3 = 3M2 (H.55) to3 = 2

I+3M+3M 2+M 3 (a,I_-__C2
(I-I.56)

A4 M _ 3= _.57) to, =
I + 3M + 3M 2 + M 3 ¢_,,lqr]-__ C2

"0-I.58)
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Now that the amplitudes and times of the impulses are known, the theoretical impulse

response of a second-order system can be found using the results from Appendix D.
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APPENDIX I

CALCULATIONS FOR DEVIATIONS IN NATURAL FREQUENCY

This appendix evaluates the residual vibration of the input shaping technique when

the actual natural frequency, _,, deviates from the design natural frequency, _,. The

magnitude of the residual vibration is important since the impulse characteristics, used

for input shaping, are based on the design natural frequency values.

Using the results derived in Appendix D, the actual response of a second-order

system to an impulse of unity gain is

x,(t) = _e

If the single impulse is divided into two impulses with characteristics derived in

Appendix F, the actual response for t > to: becomes

x2o(O _ xl(t) * x2(t) 6.2)
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where

x_(t) ".

1
M÷! _"

M

M+I _"
e -¢.o(,-,.)sin(_a_/__ C2(t_/o2)). ('1.4)

Using theresultsderivedin Appendix E, theactualsystem responseto thetwo impulse

inputfort _ to:can be expressedas

x2,,(:) = B2.sin(a t+ t2,) (1.5)

where

B2a -

(I.6)

120



_t2a = -t_-!

To determine the amount of residual vibration, a vibration error expression must

be defined. The error, denoted err, can be expressed as the ratio of the actual multiple

impulse response magnitude to the actual impulse response magnitude of a second-order

system. The error expression is defined only for time after the multiple impulse input

has occurred to ensure that the

MathematicaLly, this is written as

IXo(t)l

system has received identical amplitude inputs.

, for t > tot (I.8)

where k is the number of impulses. The residual vibration is the vibration error

expressed as a percentage. Using Equations fI. 1) and CI.5), the vibration error for the

two impulse input becomes

]x2o(t) I
Ix,(,)l M+I ")1 (I.9)
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Ifthesingleimpulseisdividedintothreeimpulseswithcharacteristicsderivedin

Appendix G, theactualresponsefort _ tosbecomes

x3,(t)- x_(t)+x2(t)+x3(t) (I.I0)

where

1

I + 2M + M 2 _

x2(t)-

2M

1 +2M+M 2 we

Using theresultsderivedinAppendix E, theactualsystemresponsetothethreeimpulse

input for t _ tas can be expressed as

x3,,(O - B3,_a(_t +_3, ,) ('I.14)
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where

I

B3a 1 + 2M + M 2 _j. ,-_'.'j(,_,,,.)_+(_m,.)_ O._S)

_3d -t_11"I('I'UUn3a'_'_n3d/
0.16)

with

0.17)

0.18)

Substituting Equations (I.1) and (I.14) into Equation (I.8), the vibration error for the

three impulse input becomes

{x_,(,}{={ I{'.(_)l'÷2M+_'J(_"")'+(""")'"
0.19)
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If the single impulse is divided into four impulses with characteristics derived in

Appendix H, the actual response for t Z t_ becomes

x,,(O - xt(t) * x2(t) * x3(t) * x4(t) g.20)

where

I

Xl(f) =

3M

xz(t) I + 3M ÷ 3M 2 * M s to,. e(,-,o,))
vq-e

3M 2

1 ÷3M+3M 2 +M 3 _"
,-c..,,-,,,)m(o.: -e(t-to,)) a.23)

x,(t) =

M $

1 + 3M + 3M 2 ÷ M 3 ¢_*
e_C..(,_,. )sin(c_a¢ 1 _ _2(t_to,))" (1.24)
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Using the results derived in Appendix E, the actual system response to the four impulse

input for t _ to_ can be expressed as

x.(t) = B_,sin(,.t+q_4.) (t.25)

where

B4 a s

1

1 + 3M + 3M 2 + M 3 t°a (1.26),,-c..,j(,_,,,.)_.(,,,,,,,.)_

_4a = -t_n'1(nUm4aden4a )
(I.27)

with

(L28)

(L29)
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SubstitutingEquations(I.l)and (I.25)intoEquation(1.8),thevibrationerrorfor

the four impulse input becomes

I_,.<,>1=[ x j(_,.)_ ÷(w,:.
[x.(t)[ I+3M+3M2+M s

('1.30)
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APPENDIX J

CALCULATIONS FOR DEVIATIONS IN DAMPING RATIO

This appendix evaluates the residual vibration of the input shaping technique when

the actual damping ratio, _'o, deviates from the design damping ratio, _'. The magnitude

of the residual vibration is important since the impulse characteristics, used for input

shaping, are based on the design damping ratio values.

Using the results derived in Appendix D, the actual response of a second-order

system to an impulse of unity gain is

x,(t) = e-_"c'"t_m(o, l_-_2,t). (J.1)

If the single impulse is divided into two impulses with characteristics derived in

Appendix F, the actual response for t a to2becomes

x2.(O - xt(t) ÷ x2(t) 0.2)
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where

i °. -_'"'-(-.,¢_-¢:)x_(t)= M'+ 1 • t (J.3)

x2(:) = •-*'""-'°'m(-.¢;-c:,-,o_)). 0.4)

Using the results derived in Appendix E, the actual system response to the two impulse

input for t _ to_ can be expressed as

x,,(t)- a,.sin(at+_) 0.5)

where

B2 a z * IM I caa
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I-:/

x N l-__)

To determine the amount of residual vibration, a vibration error expression must

be defined. The error, denoted err, can be expressed as the ratio of the actual multiple

impulse response magnitude to the actual impulse response magnitude of a second-order

system. The error expression is defined only for time after the multiple impulse input

has occurred to ensure that the system has received identical amplitude inputs.

Mathematically, this is written as

,,,.,._-I=,.o(t>l/o,.t_. to,
I=o(t>l

(:I.8)

where k is the number of impulses. The residual vibration is the vibration error

expressed as a percentage. Using Equations 0.1) and 0.5), the vibration error for the

two impulse input becomes

,.:.: , II,,.(,>1 M+, N_- e)
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If the single impulse is divided into three impulses with characteristics derived in

Appendix G, the actual response for t _ to.,becomes

x3.(t) - x_(t) +x_(t) +x_(t) 0.I0)

where

1

xl(t) 1+2M+M2°''r',,'.tsin(¢,,1_'_,)= • t O.ll)

2M

x2(t) I + 2M + M 2 _.- 0.12)

M 2

(J.13)

Using theresultsderivedinAppendix E, theactualsystemresponsetothethreeimpulse

inputfort _ tojcan be expressedas

x3o(t ) z B3osin(,.t+_3.) 0".14)
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where

1

B3_ 1 + 2M + M 2 tom. .-c...,¢(,u,,,.)_÷(,,,,,,,,.)_ o._5)

_34 ---I;1111"II'_3a___34/
0.15)

with

(/.17)

Substituting Equations O.1) and U.14) into Equation (/.8), the vibration error for the

three impulse input becomes

Ix,,<O}= 1 )_ [Ix,(t) I 1÷2n +_ _J(_n_" ÷(n"m")2 "
0.19)
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If the single impulse is divided into four impulses with characteristics derived/n

Appendix H, the actual response for t _ to, becomes

=,,(t).x_ft)÷x2(t)÷xs(t)+x,ft) 0.20)

where

I

x 1(t) - I÷3M+3M 2+M s _"

e'e""san(c% l_- _2.t)
0.2D

x2ft) .

3M

I + 3M ÷ 3M* ÷ M s _o,

"*'""

x,(t) -

3M 2

I + 3M ÷ 3M 2 + M 30)"

x,(t) =

M 3

1 ÷ 3M + 3M z + M 3 _)"

""{'v'(*" tu)Sia( ¢_,I_l_-_2(t_ to,)). (J.24)
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Using the resultsderived in Appendix E, the actualsystem response to the four impulse

input for t _ to, can be expressed as

0.25)

where

B4 a s

I

I ÷3M÷3M 2 +M s om
,-_...,j(_,,,)_÷(_,,)_ 0.26)

_4a = -l_n'l( "_4a_ )

0.27)

with

l-d /
0.25)
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SubstitutingEquations(J.I)and 0.25)intoEquation0.8),thevibrationerrorfor

the four impulse input becomes

I.=.¢t>l 1 +3M+3M2+M ,_/(de"" +(mum4" "
0.30)
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APPENDIX K

CIRCUIT FOR ACQUIRING FREQUENCY DATA

Thecircuit shownin Figure K. 1wasusedm combine the control signal from the

MicroVAX with a random noise signal from the HP Analyzer. This new signal was then

input to the KEPC0 amplifier that drives the hydraulic valve for joint one.
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R 1

O----- R I
4-

MIcr'oVAX

0
HP +

Anc_tyzer

R 1

R_

KEPCO

-amp

I

Figure K. 1 Circuit Used to Combine Random Noise with Control Signal

The resistor values are chosen to insure proper impedance matching of the various

system components. The resistor values used are

Rl = lOkQ
R2 _0.1- 10kQ.

NOTE: The KEPCO amplifierrequiresitsinputdevicetohave an impedance higherthan

theoperationalamplifier(op amp) can supply. Therefore,R2 must be used toincrease

theoverallback impedance of theop amp.
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APPENDIX L

LEAST-SQUARES REGRESSION OF EXPERIMENTAL DATA

This appendix shows how a least-squarescurve fit was derived from the

experimental data. A polynomial regression that is a function of 0L and 02 will be

developed for the damped natural frequency, f#, and the damping ratio, L A full

discussion of linear regressions can be found in [10].

Consider the following Y#-order polynomial

y - b,e]+b2o:+b,e2+a3e_+a_O:+ateZ+ao. (L.1)

The sum of the squares of the residuals is

t-I

(L.2)

where N is the number of data points. Take the derivative of Equation (L.2) with respect

to each of the unknown coefficients of the polynomial to get

0...3)
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as.=-2_ o,,(_,-Oo-o,o,,-_e_,-_,o;,-_,o_,-_o:,-_,o'_,)_.+)
aa x +.,

as. -2_ e,_,(,,-.o-O,O,,-_e_,-o,o;,-_,o_,-_oi,-_,o_',)_..5)
aa2 _-1

3 _ b2e21as.__2_ep,(y_ao_a,o,,_a:e2x_a3e,,_ble2 ' -b3O_,) (I..6)
aa3 i.1

=-a,e_+-b,e=,-b=e:,-b,e:,) _._as, : _2_ e_,(y,- "o- a,e,,- a2e;,
abl l.l

as, _ -2 E e_,(y,-ao-a,ou- a2e_,- a,o,,- b,02,
8b 2 j.]
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Equations (L.3) through (L.9) can be set equal to zero to minimize S,. Rearranging the

previously mentioned equations yields a lincar equation with respect to the unknown

coefficients of the form

[A]_ - E (L._o)

where

[A] =

N N N N N N

|°1 l'-I J-I l-I t-I 1-1

N N N N N N N
3

|-1 i°l i-If-I i-I i-I i-I

N N N N N N N
• 4 5 6 :3 3 2 :3 :3

• OlrO2t01_0a_ 0x_02to,3,Ee. Ee,, Eo,,E E E
i=1 i=1 i=1i-I i-1 i-I i-I

N N N N N N N

e2, _ e=,e., _ e2,e_, E e=,et, _ 0_. _ el, _ el,
i-I |-1 i-1 i-I t,,l f-1 l-I

N N N N N N iV

Oa_Oue2,ex,_ e2,e. _ _ 02, _3 e2, _ e2,
_-1 _-1 _-1 _-1 _-x _-_ _-x

(L.II)
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a o

a 1

a 2

a_

bl

b2

b3

(L. 12)

and

N

lol

N

J-I

N

i-I

.q

l-I

N

i-I

N

J°l

N

J-I

CL.13)
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The unknown coefficientscan now be easilysolvedforby

. [A] -__'. (L. 14)

A MATLAB program was

experimentaldata from Chapter IV.

frequencyand damping ratioare

used to evaluate Equation (L.14) using the

The resultingequationsfor the damped natural

_(01,62) = - 0.4212023+ 1.808602- 2.144102- 0"9_990_

+ 1.45400_- 3.639201 + 7.7830
(L.15)

and

C(el,e2) = - 0.4269e_ + 1.8918e22- 2.7159e 2 - 0.0533e_

+ 0.3410e_ - 0.614881 + 1.6762.
(L.16)
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